
 International Journal of Engineering Applied Sciences and Technology, 2022
 Vol. 7, Issue 2, ISSN No. 2455-2143, Pages 423-425

 Published Online June 2022 in IJEAST (http://www.ijeast.com)

423

APPLYING COMPUTATIONAL INTELLIGENCE

ON PRODUCTION SUPPORT SOFTWARE

MODEL

P.C.Harish Padmanaban

Software Reliability Engineer

Independent Researcher, Bangalore, Karnataka, India

Dr.Yogesh Kumar Sharma

Professor, Software Engineering Dept.

JJT University, Churela, Rajasthan, India

Abstract: The production support software models are

very unpredictable in the field of Information

Technology field and people finding more complex ways

to solve and mitigate the issues. The normal triage

process in any support models starts from identifying

the problem and complexity of the assigned production

issue. Then the later stage goes on by engaging the right

people to fix the issue and updating the Production

ticket. Already there are plenty of automation tools are

available to minimize the human cost in the field of IT in

addition to that this paper providing more insights on

production support model and how a approach to

minimize the triage process involved in the same model.

This paper provides more clarity on existing models and

how the new approach will overcome the existing

limitations.

Keywords- IT – Information Technology, Incidents,

Tickets, POC.

I . INTRODUCTION:

Production Support is very vast and dry area in the IT

industry which in terms composed of more process and

software methodologies to fix and update the issues.

Usually the issue which impacts the customer who will be

reported to the respective point of contact in the

organization who delivers the service to the end users. Then

the POC work on the incident and find the root cause to

analyze the issue. There are several factors to find the root

cause and POC’s duty to map all of the factors to identify

the solution. The important factor as part of the triaging

include fixing the issue before the given dead line. The

research has been done in various scenarios to identify

where and how best we can fit the intelligence system to

avoid escalations . And the same research has been applied

in several ticketing systems across the technologies.

A Typical triage process includes as below -

Creating Incident Assigning to the right POC Root

cause analysis fixing the issueUpdate Incident

The above flow is the normal structure followed across all

the organizations only the tools and technologies differs in

terms of organization’s culture but the objective is same.

II. FACTORS WHEN THE PRODUCTION ISSUE

AFFECTING THE CUSTOMER WORK FLOW:

1. Recent changes in the code which is not been reviewed

properly.

2. Thread / Heap dumps – Improper validation checks to

increase the thread size.

3. Permission issue.

4. Installation/build failure.

5. Network issues.

6. Server issues (Web Server/Application server).

7. Improper validation checks.

This 7 factors are more frequently occurring patterns and

would include investing more cost and time to resolve all of

the issues but the root cause always will be very simple and

can be easily avoidable.

III. IDENTIFYING ERROR PATTERS WITH

INTELLIGENT MODELS:

With the help of computational intelligence we can mitigate

the cost and time by identifying common patterns across all

the scenarios with the prediction coverage of >91% and can

be avoid the upcoming complex factors by make the system

evolving by its own data. This is the main objective of this

paper and how best the issues can be learned and fixed by

the system. The system here meant to be a scheduler which

applies the computational intelligence technique to learn the

triage process and the learned data will be saved as a

prediction model and will be kept under Knowledge base

and will be used whenever it requires to apply the model.

 International Journal of Engineering Applied Sciences and Technology, 2022
 Vol. 7, Issue 2, ISSN No. 2455-2143, Pages 423-425

 Published Online June 2022 in IJEAST (http://www.ijeast.com)

424

The above techniques are applied with the help of a

algorithm called “Machine Learning” and identifying the

patterns are implemented using python and R language. The

same techniques are tried across different organization

culture and the result we received which outperformed all

the triage process.

We identified the graph which shows more improvement

over time and cost across most of the triage process.

Fig 1.1 – Comparison graph between typical and intelligent systems

IV. IN DETAIL OF THE PROPOSED MODEL:

We named the proposed model as “I-Scheduler” (Intelligent

Scheduler) which is a mixture of two intelligence techniques

like “learning” and “neural network processing”. In this

paper we providing the one technique where it is used to

solve the production incident and how best it provided the

suggestions and which part of the triage process it was

helpful.

First the I-Scheduler takes the incident as an input and start

processing its intelligent techniques with the provided the

data on the incidents. In most of the incidents following

points are the key data which in takes acts as an learning

data for the I-Scheduler.

 Incident severity & Priority

 Which application and functionality affects the end user

 Due date to fix the issue

 Remedy and relevant issues

The above points are taken as an learning data and with the

help of compiler a small search module has been

implemented as part of the I-Scheduler which is used to

search all the relevant issues and identify more suitable and

near coherent pattern with the help of a python library called

“deepy” which classifies the relevant patterns and logics are

written in such a way where connected dotted outputs are

considered as a relevant issue types . The logic includes

model to find a more relevant data.

Secondly a Jenkins job has been triggered on the scheduled

incidents . Whenever a incident related mail been fall under

our SFTP mail client, Then the job will be triggered. The

build script has been implemented in shell and run this

python scheduler whenever the incidents is been reported.

Finally with the help of a another python library called

“Lasagne” we identifying the fix provided by various issues

during the initial search phase and providing the best fix

suggestions based on the identified relevant patterns.

V. CONCLUSION:

With the default parameters, the code runs for 100 pre-

training epochs with mini-batches of size 10. This

corresponds to performing 500,000 unsupervised parameter

updates. We use an unsupervised learning rate of 0.01, with

a supervised learning rate of 0.1. With early-stopping, this

configuration achieved a minimal validation error of 1.27

with corresponding test error of 1.34 after 46 supervised

epochs.

On an Intel(R) Xeon(R) CPU X5560 running at 2.80GHz,

using a multi-threaded MKL library (running on 4 cores),

pre training took 615 minutes with an average of 2.05

mins/(layer * epoch). Fine-tuning took only 101 minutes or

approximately 2.20 mins/epoch.

Hyper-parameters were selected by optimizing on the

validation error. We tested unsupervised learning rates

in and supervised learning rates

in . We did not use any form of

regularization besides early-stopping, nor did we optimize

over the number of pre training updates.

VI. REFERENCES:

[1]. Pratik,Jyoshi (2017)`. Artificial Intelligence with

Python, (pp.150 – 198).

[2]. Chollet,Francois(2017) . Deep Learning with

Python,(pp. 122 – 148).

[3]. WAN,Jiangping(2009) . Research on Software

Production Support Structure , “School of Business

Administration, South China University of

Technology, Guangzhou, China; 2Institute of

Emerging Industrializa-tion Development South

 International Journal of Engineering Applied Sciences and Technology, 2022
 Vol. 7, Issue 2, ISSN No. 2455-2143, Pages 423-425

 Published Online June 2022 in IJEAST (http://www.ijeast.com)

425

China Univ. of Tech., Guangzhou, China”(pp.174-

188)

[4]. Poole,David; Alan Mackworth; Randy Goebel(1998).

Computational Intelligence A Logical Approach

Published by Oxford University Press, Inc.

[5]. Rodolfo C.Cavalcanteab Rodrigo C.Brasileirob;

Victor L.F.Souzab ;Jarley P.Nobregab; Adriano

L.I.Oliveira(2016) . Computational Intelligence and

Financial Markets: A Survey and Future

Directions(pp. 195-209)

[6]. Thomas,Hanne ; Rolf,Dornberger (2016)

Computational Intelligence in Logistics and Supply

Chain Management, Part of the International Series

in Operations Research & Management Science book

series (ISOR,volume 244)(pp 13-41)

[7]. ShellyXiaonan, Wu; Wolfgang ,Banzhaf(2010).The

use of computational intelligence in intrusion

detection systems: A review(pp 2-33)

[8]. Dr. Jennifer S. Raj(2019). A COMPREHENSIVE

SURVEY ON THE COMPUTATIONAL

INTELLIGENCE TECHNIQUES AND ITS

APPLICATIONS(pp-147-159)

[9]. Alatas, Bilal(2019) "Sports inspired computational

intelligence algorithms for global optimization."

ArtificialIntelligence Review 52, no.(pp 1579-1627)

[10]. Ansari, A. Q.(1998) "The basics of fuzzy logic: A

tutorial review." COMPUTER EDUCATION-

STAFFORD-COMPUTER EDUCATION GROUP-

88(pp 5-8)

[11]. Siddique, Nazmul, and Hojjat Adeli(2013)

Computational intelligence: synergies of fuzzy logic,

neural networksand evolutionary computing. John

Wiley & Sons.

[12]. Padmanaban,Harish(2016) DEVELOP SOFTWARE

IDE INCORPORATING WITH ARTIFICIAL

INTELLIGENCE , VOLUME 1, ISSUE 10 (pp 102-

106)

[13]. . M. Poulding and J. A. Clark(2010) “Efficient

software verification: Statistical testing using

automated search,” IEEE Transactions on Software

Engineering, vol.36, no. 6, (pp 763–777)

[14]. Oliver Kramer(2008) Self-Adaptive Heuristics for

Evolutionary Computation, Vol. 147. ISBN 978-3-

540-69280-5.

[15]. T. Miki and T. Yamakawa(1999) Analog

implementation of neo-fuzzy neuron and its on-board

learning. Computational Intelligence and Application

(pp 144–149).

[16]. R. Andrews, J. Diederich and A. B. Tickle(1995) "A

survey and critique of techniques for extracting rules

from trained artificial neural networks", Knowl.-

Based Syst., vol. 8, (pp 373-389)

